Researchers in the University of Washington say that they have been able to train tiny semiconductor crystals, called nanocrystals or quantum dots, to display new magnetic functions at room temperature using light as a trigger.
Silicon-based semiconductor chips incorporate tiny transistors that manipulate electrons based on their charges. Scientists also are working on ways to use electricity to manipulate the electrons' magnetism, referred to as "spin," but are still searching for the breakthrough that will allow "spintronics" to function at room temperature without losing large amounts of the capability they have at frigid temperatures.
The team led by Daniel Gamelin, a UW chemistry professor, has found a way to use photons tiny light particles to manipulate the magnetism of semiconductor nanocrystals efficiently, even up to room temperature.
The team used nanocrystals of a cadmium-selenium semiconductor called cadmium selenide, but replaced some nonmagnetic cadmium ions with magnetic manganese ions. The crystals, smaller than 10 nanometers across (a nanometer is one-billionth of a meter), were then suspended in a colloid solution, like droplets of cream suspended in milk.
Beams of photons were used to align all of the manganese ions' spins, creating magnetic fields as much as 500 times more powerful than in the same semiconductor material without manganese. The magnetic effects were strongest at low temperatures, but remained remarkably strong up to room temperature, Gamelin said.
In a second paper published Sunday (Aug. 16) in the online edition of Nature Nanotechnology, Gamelin's group reported related effects in semiconductor nanocrystals made of zinc oxide but also containing small amounts of manganese impurities.
Thanks - I fixed that,
Thanks - I fixed that, you're right of course
Ron
one billionth of an inch?
Last I checked a nanometer was one-billionth of a meter, not "one-billionth of an inch." One clue to this is the presence of the word "meter" in "nanometer."
Admittedly this error was also in the original article.