Spin current - Page 3

Researchers explore spin manipulation technique as a path towards ultralow power electronics

Researchers from Beihang University and University of British Columbia have found that spin flipping can be achieved by the valley-Zeeman SOF in monolayer tungsten diselenide (WSe2) at room temperature, which manifests as a negative magnetoresistance in the vertical spin valve.

Manipulating spins can enable the development of ultralow power electronics, but previous approaches were limited by the strength of the effective field and high-quality structures. The team in this recent study explored a mechanism to manipulate spins at room temperature with monolayer tungsten diselenide, in virtue of a novel giant spin-orbit field.

Read the full story Posted: Jul 14,2022

TUK team secures grant to develop spintronic devices

A research team from the Technical University of Kaiserslautern (TUK) has been awarded a Consolidator Grant from the European Research Council (ERC) to develop spintronic devices.

Professor Dr. Mathias Weiler, lead of the study, will receive €2 million over the next five years. Scientists are working on spin waves and new spintronic devices that could drastically accelerate the storage, processing, and transmission of information.

Read the full story Posted: Mar 22,2022

Researchers develop conducting system that controls the spin of electrons and transmits a spin current over long distances

In a new study by a team of Duke University and Weizmann Institute researchers, led by Michael Therien, professor of chemistry at Duke, a new achievement was reported: The development of a conducting system that controls the spin of electrons and transmits a spin current over long distances, without the need for the ultra-cold temperatures required by typical spin-conductors.

"The structures we present here are exciting because they define new strategies to generate large magnitude spin currents at room temperature," said Chih-Hung Ko, first author of the paper and recent Duke chemistry Ph.D.

Read the full story Posted: Feb 02,2022

Researchers succeed in measuring the properties of spin waves in graphene

Researchers from Harvard University and Japan's National Institute for Materials Science have demonstrated a new way to measure the properties of spin waves in graphene.

New method to measure spin waves in graphene imageA charge sensor measuring the cost of electrons surfing on the spin wave (green wavy lines) (Credit: Yacoby Lab/ Harvard SEAS)

Spin waves, a change in electron spin that propagates through a material, could fundamentally change how devices store and carry information. These waves, also known as magnons, don’t scatter or couple with other particles. Under the right conditions, they can even act like a superfluid, moving through a material with zero energy loss.

Read the full story Posted: Dec 15,2021

Researchers design a system that demonstrates unusually long-range Josephson coupling across a half-metallic ferromagnet

An international team has, for the first time, designed a material system that exhibits an unusually long-range Josephson effect. Regions of superconducting YBa2Cu3O7 are separated by a region of half-metallic, ferromagnetic manganite (La2/3Sr1/3MnO3) one micron wide.

When two superconducting regions are separated by a strip of non-superconducting material, a special quantum effect can occur, coupling both regions. This is known as the Josephson effect. If the spacer material is a half-metal ferromagnet, it can open up new potential applications for novel spintronic applications.

Read the full story Posted: Dec 05,2021

Researchers show helium can assist in controlling the spin polarization of electrons

Researchers at University of St. Andrews in the U.K., along with other institutes worldwide, have recently shown that helium can influence the spin polarization of the tunneling current and magnetic contrast of a technique known as spin-polarized scanning tunneling microscopy (SP STM). Their findings could have important implications for the development of new electronic devices.

In their previous research, the same research group investigated the magnetic order in the antiferromagnetic material iron telluride. They found that by collecting magnetic material from their sample's surface using an STM tip, they could image the sample's magnetic order.

Read the full story Posted: Nov 03,2021

Researchers examine tension-free Dirac strings and steered magnetic charges in 3D artificial spin ice

Researchers at the University of Vienna have designed a 3D magnetic nanonetwork, where magnetic monopoles emerge due to rising magnetic frustration among the nanoelements, and are stable at room temperature.

The new three dimensional (3D) nano-network could mean a new era in modern solid state physics, with numerous applications in photonics, bio-medicine, and spintronics. The realization of 3D magnetic nano-architectures could enable ultra-fast and low-energy data storage devices.

Read the full story Posted: Aug 06,2021

New mechanism converts electrical current vortices into spin currents and vice versa

Researchers from the RIKEN Center for Emergent Matter Science, together with their colleagues, have shown the conversion of a spin current into a rotating charge current vortex using numerical simulations.

This new approach can contribute to the emergence of energy efficient spintronic devices, as it helps to convert between electrical current vortices and a spin current and vice versa. The team came up with the idea of ​​exploiting the Rashba effect – an unusual phenomenon that was discovered in 1959. It occurs on some surfaces or interfaces between two materials where the atomic structure is no longer symmetrical. The Rashba effect causes the spin and the orbital motion of an electron to interact.

Read the full story Posted: Jul 16,2021

Inducing and tuning spin interactions in layered material

A China-Australia collaboration has, for the first time, illustrated that Dzyaloshinskii-Moriya interactions (DMI), an antisymmetric exchange vital for forming various chiral spin textures such as skyrmions, can be induced in a layered material tantalum-sulfide (TaS2) by intercalating iron atoms, and can further be tuned by gate-induced proton intercalation.

Magnetic-spin interactions that allow spin-manipulation by electrical control allow potential applications in energy-efficient spintronic devices.

Read the full story Posted: Jun 17,2021

Researchers find way to control spin waves using light in an insulating material formed by magnetic layers

An international research team, including scientists from the Institute of Molecular Science of the University of Valencia (ICMol), has discovered how to control spin waves using light in an insulating material formed by magnetic layers. This could be a step towards a new generation of devices that store and transport information in a highly efficient way and with very low consumption.

If throwing a stone into a pond generates a wave that propagates over the surface of the water, something similar happens when the action of a magnet or a pulse of light, for example, propagates over a magnetic material – made up of small magnets (spines) connected to each other – and produces what is known as a ‘spin wave’.

Read the full story Posted: Jun 09,2021