Researchers develop non-thermal method to alter magnetization using XUV radiation
Researchers from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Sorbonne Université CNRS, INRS-EMT, FERMI, Uppsala University, University of York and University of Hull have developed a non-thermal method to alter magnetization using XUV radiation, utilizing the inverse Faraday effect in an iron-gadolinium alloy. This approach enables significant magnetization changes without the usual thermal effects, promising enhancements in ultrafast magnetism technologies.
Intense laser pulses can be used to manipulate or even switch the magnetization orientation of a material on extremely short time scales. Typically, such effects are thermally induced, as the absorbed laser energy heats up the material very rapidly, causing an ultrafast perturbation of the magnetic order. The research team has now demonstrated an effective non-thermal approach of generating large magnetization changes. By exposing a ferrimagnetic iron-gadolinium alloy to circularly polarized pulses of extreme ultraviolet (XUV) radiation, they could reveal a particularly strong magnetic response depending on the handedness of the incoming XUV light burst (left- or right-circular polarization).