Graphene - Page 6

A new method introduces magnetism to graphene while preserving its electronics properties

Researchers from the University of California at Riverside developed a way to introduce magnetism in graphene while still preserving electronics properties. This new method is superior to doping as it does not damage graphene's electronic properties.

magnetic graphene spintronics riverside university

The research team used yttrium iron garnet grown using laser molecular beam epitaxy. They placed a single layer of graphene on an atom-thick sheet of yttrium iron garnet, and discovered that graphene borrowed the magnetic properties of the material. The researchers state that they managed to avoid interfering with graphene's electrical transport properties by using the electric insulator compound.

Read the full story Posted: Jan 27,2015

Powerful magnet developed, can selectively control of the flow of spins

Researchers from Spain discovered a way of using lead atoms and graphene to create a powerful magnetic field by the interaction of the electrons' spin with their orbital movement. The scientists believe that this discovery could come in handy for spintronics applications.

The researchers laid a layer of lead on a layer of graphene, grown over an iridium crystal. This way, the lead forms 'islands' below the graphene and the electrons of this 2D material behave as if in the presence of a huge 80-tesla magnetic field, which allows for the selective control of the flow of spins. The scientists also state that under these conditions certain electric states are immune to defects and impurities.

Read the full story Posted: Dec 16,2014

Zigzag-edged graphene nanoribbons suitable for spintronics applications

A zigzag-edged graphene nanoribbon is the most magnetic type - and these ribbons are considered the most suitable ones for spintronics applications. Researchers from UCLA and Tohoku University developed a new self-assembly method to fabricate pristine zigzag graphene nanoribbons.

The researchers say they can control the ribbons length, edge configuration and location on the substrate.

Read the full story Posted: Oct 25,2014

A new topological insulator may enable fast spintronics devices

Researchers from the University of Utah developed a new topological insulator made from bismuth metal deposited on silicon. This material may be very suitable for quantum computers and fast spintronic devices.

This new material has the largest energy gap ever predicted. It can also be used alongside silicon so this material may be relatively easy to be used alongside current semiconductor technology.

Read the full story Posted: Sep 23,2014

NRL scientists report the highest spin injection values yet measured for graphene

Researchers from the US Naval Research Laboratory (NRL) developed a new type of tunnel device structure in which both the tunnel barrier and transport channel are made from graphene. The researchers say that this device features the highest spin injection values yet measured for graphene, and this design could pave they way towards highly functional and scalable graphene electronic and spintronic devices.

The tunnel barrier is made from dilutely fluorinated graphene while the charge and transport layer is made from graphene. The researcher demonstrated tunnel injection through the fluorinated graphene, and lateral transport and electrical detection of pure spin current in the graphene channel.

Read the full story Posted: Jan 31,2014

Graphene can filter electrons according to the direction of their spin

Researchers from MIT discovered that under a powerful magnetic field and at very low temperatures, graphene can filter electrons according to the direction of their spin. This is something that cannot be done by any conventional electronic system - and may make graphene very useful for quantum computing.

it is known that when a magnetic field is turned on perpendicular to a graphene flake, current flows only along the edge, and in one direction (clockwise or counterclockwise, depending on the magnetic field orientation), while the bulk graphene sheet remains insulating. This is called the Quantum Hall effect.

Read the full story Posted: Jan 01,2014

Folding graphene in a fin-like structure opens a bandgap and produces a spin-polarized current

Researchers from the US, Singapore, Brazil and Ireland have theoretically shown that if you fold a graphene sheet in a fin-like structure and expose it to a magnetic field you open up a bandgap. This will also produce spin-polarized current, which should make it useful in Spintronics applications.

The researchers say that this folding can be easily achieved by depositing graphene on a substrate with periodic trenches.

Read the full story Posted: Dec 20,2013

Grain boundaries in certain 2D materials create nano magnets

Researchers from Rice University calculated that imperfections in certain 2D materials create the conditions by which nanoscale magnetic fields arise. According to the researchers this could lead towards new strategies in Spintronics research.

The researchers say that those grain boundaries in 2D semiconducting materials known as dichalcogenides (hybrids that combine transition metal and chalcogen atoms) can be magnetic. The researchers focused on molybdenum disulfide (MDS) grown using CVD. In graphene, the boundaries are weak points, but in dichalcogenides, they have unique properties, and they "squeeze magnetism out of nonmagnetic material".

Read the full story Posted: Nov 15,2013

Magnetic graphene at room temperature demonstrated

Researchers from UC Berkeley, Florida International University (FIU) and the Georgia Institute of Technology demonstrated for the first time the presence of magnetic properties in graphene nanostructures at room temperature. This could lead towards Spintronics applications.

To achieve this they functionalized the graphene with nitrophenyl. The researchers thus confirmed the presence of magnetic order in nanoparticle-functionalized graphene. The graphene was epitaxially grown at Georgia Tech, chemically functionalized at UC Riverside and studied at FIU and UC Berkeley.

Read the full story Posted: Nov 12,2013