Reserachers from Spain's nanoGUNE Cooperative Research Center (CIC) developed a method to connect magnetic porphyrin molecules to graphene nanoribbons. These connections may be an example of how graphene could enable the potential of molecular electronics.
Magnetic Porphyrin, a molecule that is responsible for making photosynthesis possible in plants and transporting oxygen in the blood, is an interesting spintronics material. The researchers now report that even after injecting electronic currents into the Porphyrin via the graphene wires, the molecule maintains its magnetic property. Small variations in the way the graphene nanoribbons are attached to a molecule can alter its magnetic properties - and the molecule's spin can be manipulated via the injected currents.