Antiferromagnetic (AFM) spintronics are devices or components for electronics that couple a flowing current of charge to the ordered spin 'texture' of specific materials. The successful development of AFM spintronics could have important implications, as it could lead to the creation of devices or components that surpass Moore's law. But it seems that finding materials with the exact characteristics necessary to fabricate AFM spintronics is highly challenging.
Researchers at the Lawrence Berkeley National Laboratory, UC Berkeley and the National High Magnetic Field Laboratory in Tallahassee have recently identified a new quantum material (Fe1/3 + δNbS2) that could be used to fabricate AFM spintronic devices. In their most recent papers, they demonstrated the feasibility of using this material for two AFM spintronics applications.
The researchers found that ultra-low current densities enabled highly stable electrical switching in TMDs, which have shown great promise for the development of new technologies. When compared with other known switchable antiferromagnetic systems, in fact, these materials exhibited additional characteristics such as a single-pulse saturation and a significantly lower activation energy (two orders of magnitude lower).
The researchers were unsure about why these materials exhibited these extraordinary switching characteristics. An observation that they thought could help them solve this riddle was that the materials presented an additional disordered magnetic phase, known as spin glass, which coexisted with the antiferromagnetic phase.
"Our ongoing research shows that this phase coexistence is highly influenced by the iron intercalation value, and consequently, it determines how this system will respond to the injection of DC electrical pulses," Eran Maniv, the lead author of the project, explained. "Our new data showed that the switching is pronounced only when the two phases coexist and is significantly suppressed when the spin glass phase is absent."
The key objective of the researchers' recent studies was to understand how the coexistence of the spin glass and antiferromagnetic phases in transition-metal dichalcogenides could impact their electrical switching capabilities. More specifically, the scientists hoped to unveil the physics behind the mechanism that enhances antiferromagnetic switching in these materials.
A spin glass is a magnetic system that exhibits randomly distributed and conflicting magnetic interactions. It could be roughly described as a disordered magnet. The spin glass state, which the researchers observed in transition-metal dichalcogenides, is not present in existing switchable antiferromagnetic systems.
"Unlike a ferromagnet or an antiferromagnet where the spins point in specific directions, a spin glass' spin points, on average, in every direction," the team said. "However, the spins of a spin glass are still glued to each other, just like the spins of a ferromagnet or an AFM. This makes them move together, enabling so-called collective dynamics. The origin of the new and enhanced switching mechanism we observed lies on the collective dynamics of a spin glass."
It was found that when an electrical current pulse is injected into a spin glass, its spins collectively rotate. This phenomenon occurs because of the disordered nature of the glassy phase, which allows the frozen spins to rotate in unison without any additional energy cost.
The researchers observed that the collective motion of the spin glass can impart spin torque on the coexisting antiferromagnetic phase, which ultimately rotates the spins of an AFM, so that their domains predominantly point in one direction. The spins' collective rotation is the key mechanism behind the enhanced switching exhibited by TMDs. Interestingly, the researchers found that the interaction between the spin glass and the AFM phases also gives rise to the giant exchange bias reported in their recent paper.
"This antiferromagnetic switching, showing single pulse rotated domains with high efficacy, has never been observed, until now," Maniv said. "The ability to control and significantly improve the highly desirable antiferromagnetic switching is a breakthrough in spintronic-related technologies. Moreover, revealing this effect in the rich material playground of the TMDs will enable future room temperature studies and improved characteristics."
Remarkably, the new magnetic and switchable system has ultra-fast dynamics, is robust to magnetic fields and also activates at lower current densities than any known material. This system's response to electrical pulses enables highly efficient single pulse activation and switching states that are far more stable and powerful than those observed in other known antiferromagnetic materials.
"One of our most striking observations was the possible presence of the theoretically predicted "Halperin-Saslow (HS) Modes' (i.e., spin waves in a spin glass)," Maniv said. "These spin waves are predicted to form in certain spin glass phases and are directly related to the global collective motion enabled by electrical current pulses."
HS Modes are hydrodynamic modes that physicists Halperin and Saslow predicted would exist in spin glasses. While the researchers did not observe these modes directly, they found clues that could pave the way towards their experimental realization. This is a particularly interesting finding, as researchers have been trying to directly observe these modes for decades.
The scientists now intend to focus on revealing the spin glassâspin wave modes (i.e., HS modes). Some of them are leading new experiments to study non-local switching in focused ion beam fabricated samples. Additionally, they intend to study various intercalated TMDs which can present similar effects but at different temperatures, allowing us to access this new mechanism at room temperature."