A team of scientists from NUST MISIS and MIPT have developed a new platform for realization of ultra-strong photon-to-magnon coupling. The proposed system is on-chip and is based on thin-film hetero-structures with superconducting, ferromagnetic and insulating layers.
This achievement addresses a problem that has been on the agenda of research teams for the last 10 years, and opens new opportunities in implementing quantum technologies.
Vasily Stolyarov, deputy head of the MIPT Laboratory of Topological Quantum Phenomena in Superconducting Systems, commented: "We created two subsystems. In one, being a sandwich from superconductor/insulator/superconductor thin films, photons are slowed down, their phase velocity is reduced. In another one, which is also a sandwich from superconductor/ferromagnetic/superconductor thin films, superconducting proximity at both interfaces enhances the collective spin eigen-frequencies. The ultra strong photon-to-magnon coupling is achieved thanks to the suppressed photon phase velocity in the electromagnetic subsystem."
Igor Golovchanskiy, leading researcher, senior researcher at the MIPT Laboratory of Topological Quantum Phenomena in Superconducting Systems, head of the NUST MISIS Laboratory of Cryogenic Electronic Systems, explained: "Photons interact very weakly with magnons. We managed to create a system in which these two types of excitations interact very strongly. With the help of superconductors, we have significantly reduced the electromagnetic resonator. This resulted in a hundred times reduction of the phase velocity of photons, and their interaction with magnons increased by several times."
This discovery will accelerate the implementation of hybrid quantum systems, as well as open up new possibilities in superconducting spintronics and magnonics.