Virginia Tech chemistry Professor Harry Dorn has developed a new area of fullerene chemistry that may be the backbone for development of molecular semiconductors and quantum computing applications.
As part of the research to place gadolinium atoms inside the carbon cage for MRI applications, Dorn created 80-atom carbon molecule with two yttrium ions inside. Then he began to fool with the materials of the cage itself. He replaced one of the 80 atoms of carbon with an atom of nitrogen (providing Y2@C79N). This change leaves the nitrogen atom with an extra electron. Dorn discovered that the extra electron, instead of being on the nitrogen atom on the fullerene cage surface, ducks inside between the yttrium ions, forming a one-electron bond. "Basically, a very unusual one electron bond between two yttrium atoms," he said.
"No one has done anything like this," said Dorn. "Since the article was published, we now know that we can take the electron back out of the fullerene cage."
He says the discovery could be important to the new fields of spintronics, molecular electronics, and micro to nanoscale electronics, as well as the new field of quantum computing.
Â