Researchers detect thermal-magnetic flow with a diamond-based quantum sensor
Researchers from Japan Advanced Institute of Science and Technology (JAIST), Kyoto University and the National Institute for Materials Science in Japan have detected energetic magnons in yttrium iron garnet (YIG), a magnetic insulator, by using a quantum sensor based on diamond with NV centers.
Nitrogen-vacancy (N-V) centers in diamond, basically a point defect consisting of a nitrogen atom paired with an adjacent lattice vacancy, have emerged as a key for high-resolution quantum sensors. It has been demonstrated that N-V centers can detect coherent magnon. However, detecting the thermally excited magnons by heat using N-V centers is difficult since the thermal magnons have much higher energy than the spin state of N-V centers, limiting their interaction.