November 2023

Researchers induce robust spin-polarization in graphene for low-power electronics

Researchers at the National University of Singapore (NUS), University of Science and Technology of China and the National Institute for Materials Science in Japan have developed a way to induce and directly quantify spin splitting in two-dimensional materials. 

Using this concept, they have experimentally achieved large tunability and a high degree of spin-polarization in graphene. This research achievement can potentially advance the field of two-dimensional (2D) spintronics, with applications for low-power electronics.

Read the full story Posted: Nov 25,2023

Researchers present experimental evidence of hopfion rings in a cubic chiral magnet

Researchers from Beijing University of Technology, South China University of Technology, Forschungszentrum Jülich and Uppsala University have reported the first experimental evidence of hopfions, which are magnetic spin structures predicted decades ago that have become a fascinating research topic in recent years.

The team used transmission electron microscopy to observe hopfions forming coupled states with skyrmion strings in B20-type FeGe plates. They provided a protocol for nucleating such hopfion rings, which they verified using Lorentz imaging and electron holography. The scientists' results are said to be highly reproducible and in full agreement with micromagnetic simulations. 

Read the full story Posted: Nov 23,2023

Realizing magnetic-field-free spintronic Thz emitters

Dr. Darren M. Graham, an associate professor from the University of Manchester, has given an interesting talk recently, titled "Exploiting magnetic anisotropy: realizing magnetic-field-free spintronic THz emitters and polarization control".

Check out the video above for the complete lecture recording.

Read the full story Posted: Nov 22,2023

Researchers confirm dynamics of skyrmion spin states in neutron-scattering experiments

Researchers from Japan's RIKEN Center for Emergent Matter Science (CEMS) and Ochanomizu University, UK's  University of Birmingham, Sweden's Lund University, Canada's Université de Sherbrooke, Czech Republic's Nuclear Physics Institute, France's Institut Max von Laue-Paul Langevin (ILL) have advanced low-energy devices based on spintronics, by measuring the dynamics of tiny magnetic vortices.

The team examined the low-energy excitations of the skyrmion state in MnSi by using the neutron spin-echo technique under small-angle neutron scattering conditions. The scientists observed an asymmetric dispersion of the phason excitations of the lattice because of the string-like structure of the skyrmion cores.

Read the full story Posted: Nov 13,2023

Researchers propose chemical method for reversible Magnetic phase transition in 2D organometallic lattices

Researchers from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS), led by Associate Prof. Li Xingxing and Prof. Yang Jinlong, recently developed a novel chemical method for two-dimensional metal-organic lattices.

In spintronics, it is paramount to develop an efficient way to reversibly control the spin order of materials. Though various physical methods have been proposed, chemically achieving this has posed significant challenges. The researchers proposed the utilization of the well-recognized lactim−lactam tautomerization process to reversibly modulate the magnetic phase transition in two-dimensional (2D) organometallic lattices. This could offer new pathways for controlling the electrical and magnetic characteristics of materials.

Read the full story Posted: Nov 11,2023

Researchers report room-temperature magnetic phase transition in an electrically tuned van der Waals ferromagnet

Researchers at China's Hefei University of Technology, University of Science and Technology of China, South China University of Technology, Chinese Academy of Sciences (CAS), Anhui University, Australia's RMIT University, University of New South Wales, Saudi Arabia's Al-Baha University and University of Jeddah have reported magnetism in a quasi-2D magnet Cr1.2Te2, observed at room temperature (290 K). 

By intercalating protons into van der Waals ferromagnet Cr1.2Te2 nanoflakes, the group of researchers successfully induced a room-temperature magnetic phase transition from ferromagnetism to antiferromagnetism.

Read the full story Posted: Nov 08,2023