April 2022

Researchers' new understanding of spin dynamics shows promise for spintronics devices

A team of scientists from the Institut national de la recherche scientifique (INRS), in collaboration with TU Wien, Austria, the French national synchrotron facility (SOLEIL) and other international partners, has reported a breakthrough in understanding how spin evolves in extremely short time scales - one millionth of one billionth of a second.

So far, studies on the subject strongly relied on limited access large X-ray facilities such as free-electron lasers and synchrotrons. The team demonstrates, for the first time, a tabletop ultrafast soft X-ray microscope to spatio-temporally resolve the spin dynamics inside rare earth materials, which are promising for spintronic devices.

Read the full story Posted: Apr 26,2022

Researchers visualize spin angular momentum in water waves

An international team that included scientists from Japan's RIKEN and the Australian National University have shown that Water waves can be used to visualize fundamental concepts, such as spin angular momentum, that arise in relativistic field theory. This could help to provide new insights into different wave systems.

The spin of an electron is usually described as the electron spinning on its axis, similar to a spinning top. However, this is a simplistic explanation and a fuller description of spin is more abstract. Now, Konstantin Bliokh of the RIKEN Theoretical Quantum Physics Laboratory and his team have shown that spin can appear as small circular motions of water particles in water waves.

Read the full story Posted: Apr 24,2022

Researchers find that graphene-on-chromia heterostructures show potential for spintronic devices

University of Nebraska-Lincoln's scientist Christian Binek and University at Buffalo's Jonathan Bird and Keke He have teamed up to develop the first magneto-electric transistor.

Along with curbing the energy consumption of any microelectronics that incorporate it, the team's design could reduce the number of transistors needed to store certain data by as much as 75%, said Nebraska physicist Peter Dowben, leading to smaller devices. It could also lend those microelectronics steel-trap memory that remembers exactly where its users leave off, even after being shut down or abruptly losing power.

Read the full story Posted: Apr 22,2022

Researchers discover new Fermi arcs that could be the future of spintronics

A team of researchers from Ames Laboratory and Iowa State University, as well as collaborators from the United States, Germany, and the United Kingdom, have reported on new Fermi arcs that can be controlled through magnetism and could be the future of electronics based on electron spins.

During the team's investigation of the rare-earth monopnictide NdBi (neodymium-bismuth), thet discovered a new type of Fermi arc that appeared at low temperatures when the material became antiferromagnetic, i.e., neighboring spins point in opposite directions. Fermi surfaces in metals are a boundary between energy states that are occupied and unoccupied by electrons. Fermi surfaces are normally closed contours forming shapes such as spheres, ovoids, etc. Electrons at the Fermi surface control many properties of materials such as electrical and thermal conductivity, optical properties, etc. In extremely rare occasions, the Fermi surface contains disconnected segments that are known as Fermi arcs and often are associated with exotic states like superconductivity.

Read the full story Posted: Apr 02,2022