July 2021

New 2D magnet that operates at room temperature could boost spintronic memory and quantum computing

Researchers from Berkeley Lab, UC Berkeley, UC Riverside, Argonne National Laboratory, Nanjing University and the University of Electronic Science and Technology of China, have developed an ultrathin magnet that operates at room temperature. This development could lead to new applications in computing and electronics - such as high-density, compact spintronic memory devices - and new tools for the study of quantum physics.

"We're the first to make a room-temperature 2D magnet that is chemically stable under ambient conditions," said senior author Jie Yao, a faculty scientist in Berkeley Lab's Materials Sciences Division and associate professor of materials science and engineering at UC Berkeley. "This discovery is exciting because it not only makes 2D magnetism possible at room temperature, but it also uncovers a new mechanism to realize 2D magnetic materials," added Rui Chen, a UC Berkeley graduate student in the Yao Research Group and lead author on the study.

Read the full story Posted: Jul 20,2021

New mechanism converts electrical current vortices into spin currents and vice versa

Researchers from the RIKEN Center for Emergent Matter Science, together with their colleagues, have shown the conversion of a spin current into a rotating charge current vortex using numerical simulations.

This new approach can contribute to the emergence of energy efficient spintronic devices, as it helps to convert between electrical current vortices and a spin current and vice versa. The team came up with the idea of ​​exploiting the Rashba effect – an unusual phenomenon that was discovered in 1959. It occurs on some surfaces or interfaces between two materials where the atomic structure is no longer symmetrical. The Rashba effect causes the spin and the orbital motion of an electron to interact.

Read the full story Posted: Jul 16,2021